viernes, 14 de diciembre de 2012



EL ACERO

El acero es una aleación de hierro con carbono en una proporción que oscila entre 0,03 y 2%. Se suele componer de otros elementos, ya inmersos en el material del que se obtienen. Pero se le pueden añadir otros materiales para mejorar su dureza, maleabilidad u otras propiedades.
Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución. Antes del tratamiento térmico, la mayoría de los aceros son una mezcla de tres sustancias, ferrita, perlita, cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita es un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una mezcla de ferrita y cementita, con una composición específica y una estructura características, sus propiedades físicas con intermedias entre las de sus dos componentes. La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de la proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.

CLASIFICACION SEGUN SU % EN CARBONO


1- Aceros de muy bajo % de carbono (desde SAE 1005 a 1015)
Se seleccionan en piezas cuyo requisito primario es el conformado en frío.
Los aceros no calmados se utilizan para embutidos profundos por sus buenas cualidades de
deformación y terminación superficial. Los calmados son más utilizados cuando se necesita forjarlos o
llevan tratamientos térmicos.
Son adecuados para soldadura y para brazing. Su maquinabilidad se mejora mediante el estirado
en frío. Son susceptibles al crecimiento del grano, y a fragilidad y rugosidad superficial si después del formado en frío se los calienta por encima de 600ºC.

2- Aceros de bajo % de carbono menor de 0,2% (desde SAE 1016 a 1030)
Este grupo tiene mayor resistencia y dureza, disminuyendo su deformabilidad. Son los
comúnmente llamados aceros de cementación. Los calmados se utilizan para forjas. Su respuesta al
temple depende del % de C y Mn; los de mayor contenido tienen mayor respuesta de núcleo. Los de
más alto % de Mn, se endurecen más convenientemente en el núcleo y en la capa.
Son aptos para soldadura y brazing.
La maquinabilidad de estos aceros mejora con el forjado o normalizado, y disminuye con el
recocido.

3- Aceros de medio % de carbono entre 0.2 y 0.5% (desde SAE 1035 a 1053)
Estos aceros son seleccionados en usos donde se necesitan propiedades mecánicas más
elevadas y frecuentemente llevan tratamiento térmico de endurecimiento.
Se utilizan en amplia variedad de piezas sometidas a cargas dinámicas. El contenido de C y Mn,
depende de una serie de factores. Por ejemplo, cuando se desea incrementar las propiedades
mecánicas, la sección o la templabilidad, normalmente se incrementa el % de C, de Mn o de ambos.
Los de menor % de carbono se utilizan para piezas deformadas en frío, aunque los estampados se
encuentran limitados a plaqueados o doblados suaves, y generalmente llevan un recocido o
normalizado previo.
Todos estos aceros se pueden aplicar para fabricar piezas forjadas y su selección depende del
tamaño y propiedades mecánicas después del tratamiento térmico. Los de mayor % de C, deben ser
normalizados después de forjados para mejorar su maquinabilidad.
Son también ampliamente usados para piezas maquinadas, partiendo de barras laminadas.
Dependiendo del nivel de propiedades necesarias, pueden ser o no tratadas térmicamente.

 4- Aceros de alto % de carbono mayor de 0.5% (desde SAE 1055 a 1095)
Se usan en aplicaciones en las que es necesario incrementar la resistencia al desgaste y altas
durezas que no pueden lograrse con aceros de menor contenido de C.
En general no se utilizan trabajados en frío, salvo plaqueados o el enrollado de resortes.
Prácticamente todas las piezas son tratadas térmicamente antes de usar, debiéndose tener especial
cuidado en estos procesos para evitar distorsiones y fisuras.

Segun sus propiedades los aceros se pueden dividir en:
Aceros especiales
Aceros inoxidables.  
Aceros inoxidables ferríticos.

Aceros Inoxidables auténticos.

Aceros inoxidables martensticos
Aceros de Baja Aleación Ultrarresistentes.
Acero Galvanizado (Laminas de acero revestidas con Zinc)
DIAGRAMA DE Fe-C

      • a 1.495 oC tiene lugar una reacción peritéctica
Líquido (0,53% C) + Ferrita-δ (0,09% C)     »       Austenita (γ) (0,17% C)

      • a 1.148 oC tiene lugar una reacción eutéctica
Líquido (4,3% C)    »    Austenita (γ) (2,08% C) + Cementita (Fe3C) (6,67%C)
>br>
      • a 723 oC tiene lugar una reacción eutectoide
Austenita (γ) (0,8% C)      »    Ferrita-α (0,02% C) + Cementita (Fe3C) (6,67%C)




CONSTITUYENTES DE LOS ACEROS:


FERRITA


            Aunque la ferrita es en realidad una solución sólida de carbono en hierro alfa, su solubilidad a la temperatura ambiente es tan pequeña que no llega a disolver ni un 0.008% de C. Es por esto que prácticamente se considera la ferrita como hierro alfa puro. La ferrita es el más blando y dúctil constituyente de los aceros. Además de todas estas características, presenta propiedades magnéticas. En los aceros aleados, la ferrita suele contener Ni, Mn, Cu, Si, Al en disolución sólida sustitucional. Al microscopio aparece como granos monofásicos, con límites de grano más irregulares que la austenita. El motivo de esto es que la ferrita se ha formado en una transformación en estado sólido, mientras que la austenita, procede de la solidificación.

   

            La ferrita en la naturaleza aparece como elemento proeutectoide que acompaña a la perlita en:

-         Cristales mezclados con los de perlita (0.55% C)
-         Formando una red o malla que limita los granos de perlita (0.55% a 0.85% de C)
-         Formando agujas en dirección de los planos cristalográficos de la austenita.
 

CEMENTITA

Es carburo de hierro y por tanto su composición es de 6.67% de C y 93.33% de Fe en peso. Es el constituyente más duro y frágil de los aceros, alcanzando una dureza de 960 Vickers. Cristaliza formando un paralelepípedo ortorrómbico de gran tamaño. Es magnética hasta los 210ºC, temperatura a partir de la cual pierde sus propiedades magnéticas. Aparece como:

-         Cementita proeutectoide, en aceros hipereutectoides, formando un red que envuelve a los granos perlíticos.
-         Componente de la perlita laminar.
-         Componente de los glóbulos en perlita laminar.  
-         Cementita alargada (terciaria) en las uniones de los granos (0.25% de C) 




PERLITA
Es un constituyente compuesto por el 86.5% de ferrita y el 13.5% de cementita, es decir, hay 6.4 partes de ferrita y 1 de cementita. La perlita tiene una dureza de aproximadamente 200 Vickers, con una resistencia a la rotura de 80 Kg/mm2 y un alargamiento del 15%. Cada grano de perlita está formado por láminas o placas alternadas de cementita y ferrita. Esta estructura laminar se observa en la perlita formada por enfriamiento muy lento. Si el enfriamiento es muy brusco, la estructura es más borrosa y se denomina perlita sorbítica. Si la perlita laminar se calienta durante algún tiempo a una temperatura inferior a la crítica (723 ºC), la cementita adopta la forma de glóbulos incrustados en la masa de ferrita, recibiendo entonces la denominación de perlita globular.
http://www.monografias.com/trabajos70/formas-alotrpicas-hierro-combinaciones-carbono/image013.jpg
AUSTENITA
 Este es el constituyente más denso de los aceros, y está formado por la solución sólida, por inserción, de carbono en hierro gamma. La proporción de C disuelto varía desde el 0 al 1.76%, correspondiendo este último porcentaje de máxima solubilidad a la temperatura de 1130 ºC.La austenita en los aceros al carbono, es decir, si ningún otro elemento aleado, empieza a formarse a la temperatura de 723ºC. También puede obtenerse una estructura austenítica en los aceros a temperatura ambiente, enfriando muy rápidamente una probeta de acero de alto contenido de C a partir de una temperatura por encima de la crítica, pero este tipo de austenita no es estable, y con el tiempo se transforma en ferrita y perlita o bien cementita y perlita.


            Excepcionalmente, hay algunos aceros al cromo-niquel denominados austeníticos, cuya estructura es austenítica a la temperatura ambiente. La austenita está formada por cristales cúbicos de hierro gamma con los átomos de carbono intercalados en las aristas y en el centro. La austenita tiene una dureza de 305 Vickers, una resistencia de 100 Kg/mm2 y un alargamiento de un 30 %. No presenta propiedades magnéticas.

  MARTENSITA  
 Bajo velocidades de enfriamiento bajas o moderadas, los átomos de C pueden difundirse hacía afuera de la estructura austenítica. De este modo, los átomos de Fe se mueven ligeramente para convertir su estructura en una tipo BCC. Esta transformación gamma-alfa tiene lugar mediante un proceso de nucleación y crecimiento dependiente del tiempo (si aumentamos la velocidad de enfriamiento no habrá tiempo suficiente para que el carbono se difunda en la solución y, aunque tiene lugar algún movimiento local de los átomos de Fe, la estructura resultante no podrá llagar a ser BCC, ya que el carbono está “atrapado” en la solución). La estructura resultante denominada martensita, es una solución sólida sobresaturada de carbono atrapado en una estructura tetragonal centrada en el cuerpo. Esta estructura reticular altamente distorsionada es la principal razón para la alta dureza de la martensita, ya que como los átomos en la martensita están empaquetados con una densidad menor que en la austenita, entonces durante la transformación (que nos lleva a la martensita) ocurre una expansión que produce altos esfuerzos localizados que dan como resultado la deformación plástica de la matriz.
Después de la cementita es el constituyente más duro de los aceros. La martensita se presenta en forma de agujas y cristaliza en la red tetragonal. La proporción de carbono en la martensita no es constante, sino que varía hasta un máximo de 0.89% aumentando su dureza, resistencia mecánica y fragilidad con el contenido de carbono. Su dureza está en torno a 540 Vickers, y su resistencia mecánica varía de 175 a 250 Kg/mm2 y  su alargamiento es del orden del 2.5 al 0.5%. Además es magnética.

 BAINITA          
Se forma la bainita en la transformación isoterma de la austenita, en un rango de temperaturas de 250 a 550ºC. El proceso consiste en enfriar rápidamente la austenita hasta una temperatura constante, manteniéndose dicha temperatura hasta la transformación total de la austenita en bainita.


LEDEBURITA

  La ledeburita no es un constituyente de los aceros, sino de las fundiciones. Se encuentra en las aleaciones Fe-C cuando el porcentaje de carbono en hierro aleado es superior al 25%, es decir, un contenido total de 1.76% de carbono.



            La ledeburita se forma al enfriar una fundición líquida de carbono (de composición alrededor del 4.3% de C) desde 1130ºC, siendo estable hasta 723ºC, decomponiéndose a partir de esta temperatura en ferrita y cementita

 TIPOS DE ENFRIAMIENTOS
            

  RECOCIDO PARA LA ELIMINACIÓN DE ESFUERZOS


            Este proceso se utiliza para eliminar esfuerzos residuales debidos a un fuerte maquinado u otros procesos de trabajo en frío. Este recocido, también denominado subcrítico, se lleva a cabo a temperaturas por debajo de la línea crítica inferior A3.


             PROCESO DE RECOCIDO           

Es un proceso muy parecido al recocido para eliminar esfuerzos, ya que se calienta el acero a una temperatura por debajo de la línea crítica inferior. La utilización de este tipo de tratamiento se orienta hacia las industrias de láminas y cable. Si se aplica después del proceso en frío se suaviza el acero por medio de la recristalización, para un posterior trabajo.


             ESFEROIDIZACIÓN          
Es un proceso por el cual se mejora la maquinabilidad. El método que suele emplearse es el mantenimiento durante un tiempo prolongado a una temperatura ligeramente inferior a la línea crítica inferior. Este tipo de proceso se emplea para obtener una mínima dureza, una máxima ductilidad o una máxima maquinabilidad en aceros al alto carbono. Los aceros al bajo carbono (como lo son nuestras muestras) rara vez esferoidizan por maquinado, porque en la condición de esferoidizados son excesivamente suaves. 


             NORMALIZADO

El tratamiento térmico de normalización del acero se lleva a cabo al calentar aproximadamente a 20ºC por encima de la línea de temperatura crítica superior seguida de un enfriamiento al aire hasta la temperatura ambiente. El propósito de la normalización es producir un acero más duro y más fuerte que con el recocido total, de manera que para algunas aplicaciones éste sea el tratamiento térmico final. Sin embargo, la normalización puede utilizarse para mejorar la maquinabilidad, modificar y refinar las estructuras dendríticas de piezas de fundición, refinar el grano y homogeneizar la microestructura  para mejorar la respuesta en las operaciones de endurecimiento.

            El hecho de enfriar más rápidamente el acero hace que la transformación de la austenita y la microestructura resultante se vean alteradas, ya que como el enfriamiento no se produce en condiciones de equilibrio, el diagrama hierro-carburo de hierro no es aplicable para predecir las proporciones de ferrita y perlita proeutectoide que existirán a temperatura ambiente. Ahora, se tendrá menos tiempo para la formación de la ferrita proeutectoide, en consecuencia, habrá menos cantidad de esta en comparación con los aceros recocidos. Aparte de influir en la cantidad de constituyente proeutectoide que se formará, la mayor rapidez de enfriamiento en la normalización también afectará a la temperatura de transformación de austenita y en la fineza de la perlita. El hecho de que la perlita (que es una mezcla eutectoide de ferrita y cementita) se haga más fina implica que las placas de cementita están más próximas entre sí, lo que tiende a endurecer la ferrita, de modo que esta no cederá tan fácilmente, aumentando así la dureza. El enfriamiento fuera del equilibrio también cambia el punto eutectoide hacia una proporción de carbono más baja en los aceros hipoeutectoides y más alta en los aceros hipereutectoides. El efecto neto de la normalización es que produce una estructura de perlita más fina y más abundante que la obtenida por el recocido, resultando un acero más duro y más fuerte.





            TEMPLADO       


 La técnica de templado consiste en calentar los el acero hasta que se alcance la temperatura crítica austenita+ ferrita austenita al igual que en el recocido y normalizado, seguido de un enfriamiento lo suficientemente rápido con el fin de endurecer la muestra considerablemente.


            Para la realización del templado emplearemos el método de Jominy (ver figura), consistente en hacer incidir una corriente de agua primero y salmuera posteriormente, sobre un extremo del tornillo. Enfriados de esta manera conseguiremos que la velocidad de enfriamiento sea muy rápida obteniendo la mayor proporción de fase martensita posible evitando que esta se transforme a medida que disminuye la temperatura. Este procedimiento es el que mayor dureza confiere a los tonillos. En particular, los enfriados con salmuera resultarán de mayor dureza  que los enfriados con agua, y la punta del tornillo donde la velocidad de enfriamiento es mayor acumulará la mayor cantidad de martensita.

1 comentario: